Spatial Distribution of Photosynthesis during Drought in Field-Grown and Acclimated and Nonacclimated Growth Chamber-Grown Cotton.

نویسندگان

  • R R Wise
  • A Ortiz-Lopez
  • D R Ort
چکیده

Inhomogeneous photosynthetic activity has been reported to occur in drought-stressed leaves. In addition, it has been suggested that these water stress-induced nonuniformities in photosynthesis are caused by "patchy" stomatal closure and that the phenomenon may have created the illusion of a nonstomatal component to the inhibition of photosynthesis. Because these earlier studies were performed with nonacclimated growth chamber-grown plants, we sought to determine whether such "patches" existed in drought-treated, field-grown plants or in chamber-grown plants that had been acclimated to low leaf water potentials (psi(leaf)). Cotton (Gossypium hirsutum L.) was grown in the field and subjected to drought by withholding irrigation and rain from 24 d after planting. The distribution of photosynthesis, which may reflect the stomatal aperture distribution in a heterobaric species such as cotton, was assayed by autoradiography after briefly exposing attached leaves of field-grown plants to (14)CO(2). A homogeneous distribution of radioactive photosynthate was evident even at the lowest psi(leaf) of -1.34 MPa. "Patchiness" could, however, be induced by uprooting the plant and allowing the shoot to air dry for 6 to 8 min. In parallel studies, growth chamber-grown plants were acclimated to drought by withholding irrigation for three 5-d drought cycles interspersed with irrigation. This drought acclimation lowered the psi(leaf) value at which control rates of photosynthesis could be sustained by approximately 0.7 MPa and was accompanied by a similar decline in the psi(leaf) at which patchiness first appeared. Photosynthetic inhomogeneities in chamber-grown plants that were visible during moderate water stress and ambient levels of CO(2) could be largely removed with elevated CO(2) levels (3000 muL L(-1)), suggesting that they were stomatal in nature. However, advanced dehydration (less than approximately 2.0 MPa) resulted in "patches" that could not be so removed and were probably caused by nonstomatal factors. The demonstration that patches do not exist in drought-treated, field-grown cotton and that the presence of patches in chamber-grown plants can be altered by treatments that cause an acclimation of photosynthesis leads us to conclude that spatial heterogeneities in photosynthesis probably do not occur frequently under natural drought conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leaf area relationships to plant vegetative characteristics in cotton (Gossypium hirsutum L.) grown in a temperate sub-humid environment

Measurement or estimation of leaf area is essential for understanding crop responses to experimental treatments. The objective of this study was to develop regression models for estimating leaf area of field-grown cotton (Gossypium hirsutum L.) from measurements of leaf dry weight (LDW), vegetative components (stems and leaves) dry weight (VDW) and plant height (PH). Three cotton cultivars (Del...

متن کامل

Plasticity of leaf anatomy, chemistry and water economy of irrigated sugar beets grown under Mediterranean conditions

  In a three-year (2004-2006), field experiment, we aimed to study changes in leaf physiological traits (leaf water potential-Ψleaf, leaf water content-LWC, carbon isotope discrimination-Δ, specific leaf area-SLA, chlorophyll content as assessed by SPAD and modified SPAD-MSPAD) and elemental composition (K, Na, Ca, Mg, K/Na, Ca/Mg, total leaf salinity-TLS) of sugar beets (cv. Rizor) grown unde...

متن کامل

Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation.

Drought tolerance is an important trait being pursued by the agbiotech industry. Abscisic acid (ABA) is a stress hormone that mediates a multitude of processes in growth and development, water use efficiency (WUE) and gene expression during seed development and in response to environmental stresses. Arabidopsis B3-domain transcription factor Related to ABA-Insensitive3 (ABI3)/Viviparous1 (namel...

متن کامل

Copper and zinc tolerance of two tropical microalgae after copper acclimation.

Current toxicity tests with microalgae are often criticized as being overly sensitive to metals because algae are cultured in metal-deficient media. If such bioassays overestimate copper toxicity in surface waters, the relevance of water quality guidelines derived from these tests is questionable. In this study, the effect of acclimation to copper at environmentally relevant concentrations, on ...

متن کامل

Water-Deficit Inducible Expression of a Cytokinin Biosynthetic Gene IPT Improves Drought Tolerance in Cotton

Water-deficit stress is a major environmental factor that limits agricultural productivity worldwide. Recent episodes of extreme drought have severely affected cotton production in the Southwestern USA. There is a pressing need to develop cotton varieties with improved tolerance to water-deficit stress for sustainable production in water-limited regions. One approach to engineer drought toleran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 100 1  شماره 

صفحات  -

تاریخ انتشار 1992